Ecosystem-based Adaptation: Economic Analysis

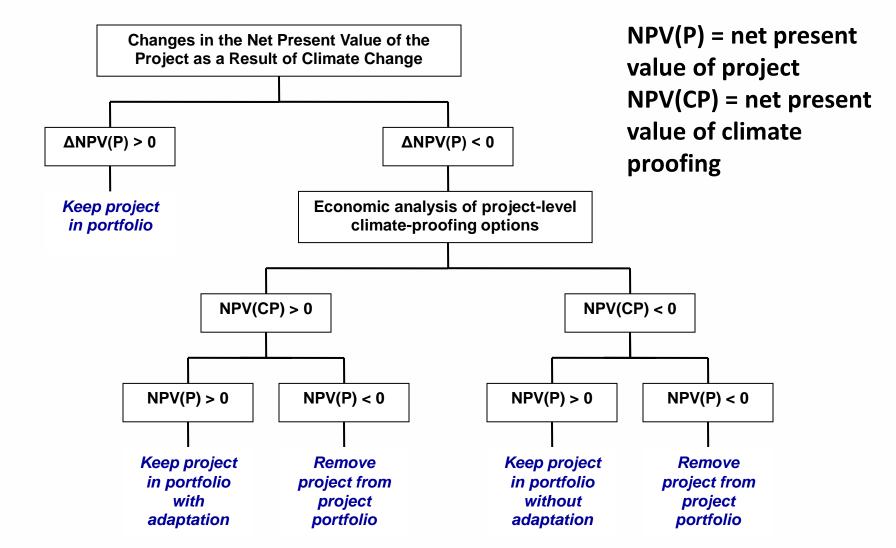
Charles Rodgers

Inter-regional Workshop on Mainstreaming Ecosystem-based Approach to Adaptation and Accessing Adaptation Finance 30 September 2014 Kuala Lumpur, Malaysia

Decision Context for Economic Analysis of EBA

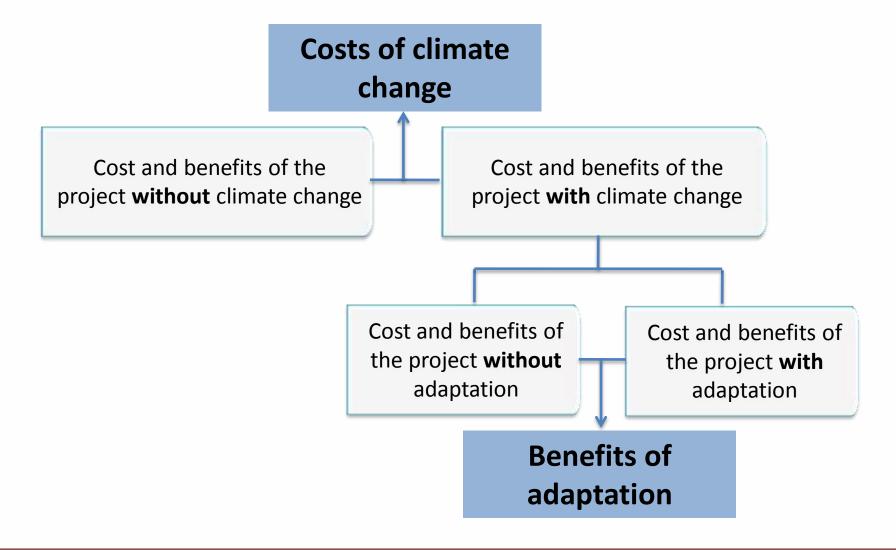
Four common decision contexts where BCA is useful:

- To evaluate a stand-alone EBA intervention against a "no project" baseline
- 2. To evaluate EBA intervention(s) against alternative approaches ("no project" baseline)
- 3. To evaluate EBA as a component (climate-proofing measure) of a proposed investment project (baseline: project without EBA intervention)
- 4. To evaluate EBA as one of alternative approaches to climate-proofing an investment project (baseline: project without EBA intervention)


SEI STOCKHOLM ENVIRONMENT INSTITUTE

Economic Analysis of Adaptation Projects (I)

- The basic steps in an economic analysis of a project:
- Step 1: Define the scope of the analysis whose costs and benefits should be accounted for in the analysis
- Step 2: Identify all potential impacts of the project within the defined scope
- **Step 3: Quantify the projected impacts of the project**
- Step 4: Monetize the negative and positive impacts of the project (transform impacts into costs and benefits)
- **Step 5: Calculate the net present value of the project**
- **Step 6: Perform sensitivity analysis**
- **Step 7: Make recommendation**


SEI STOCKHOLM ENVIRONMENT INSTITUTE

Economic Analysis of Adaptation Projects (II)

SEI STOCKHOLM ENVIRONMENT INSTITUTE Projects adversely impacted by climate change do not necessarily need to be climate-proofed; and not all projects that can be climate-proofed should be conducted!

Costs of Climate Change vs Benefits from Adaptation

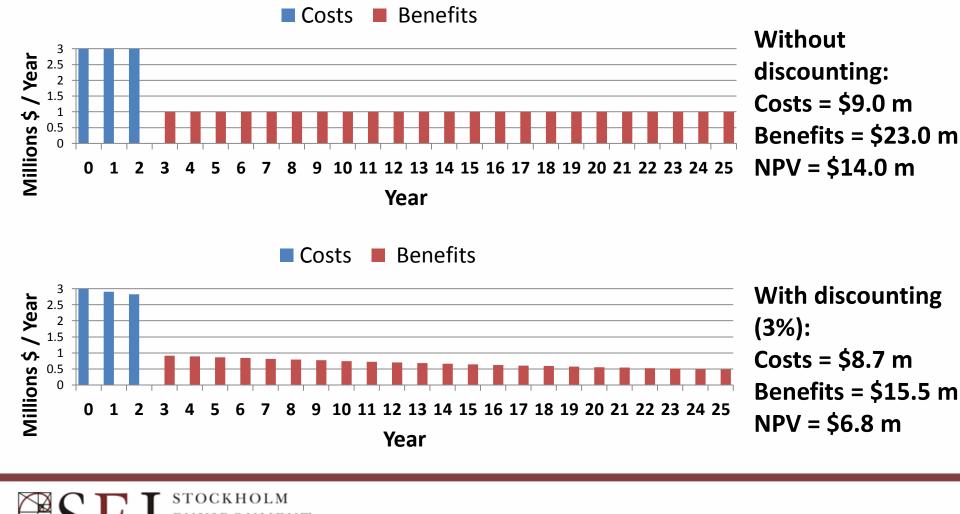
SEI STOCKHOLM ENVIRONMENT INSTITUTE

Benefit-Cost Analysis Basics

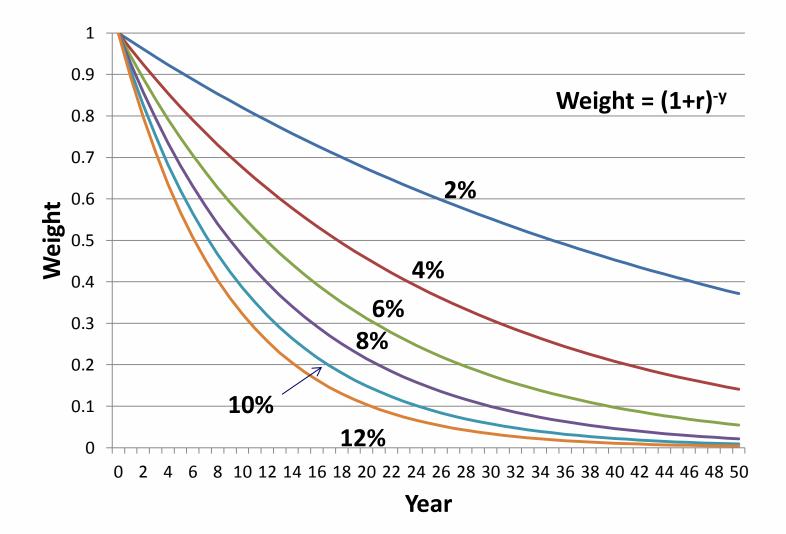
Least-cost approach: useful when data are limited

$$C = \sum_{t=0}^{T} c_t (1+r)^{-t}$$

- C = total project costs
- c_t = costs in year t
- t = time (year)
- T = project lifespan
- r = discount rate


Net Present Value approach: recommended

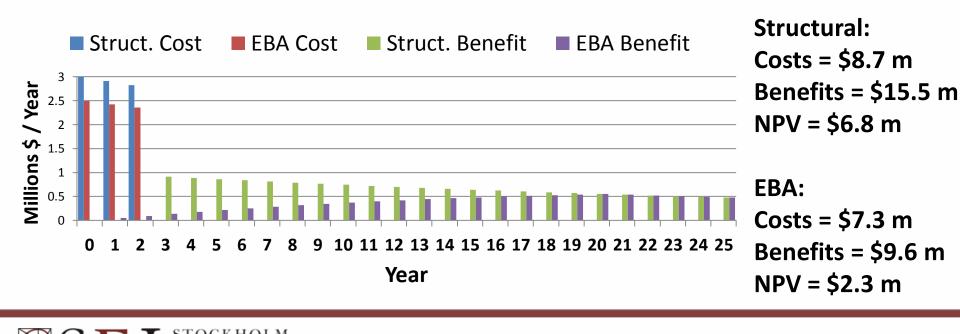
$$NPV = \sum_{t=0}^{T} \frac{B_t - C_t}{(1+r)^t}$$


- NPV = net present value
- B_t = benefits in year t
- C_t = costs in year t
- t = time (year)
- T = project lifespan
- r = discount rate

Impact of Discounting

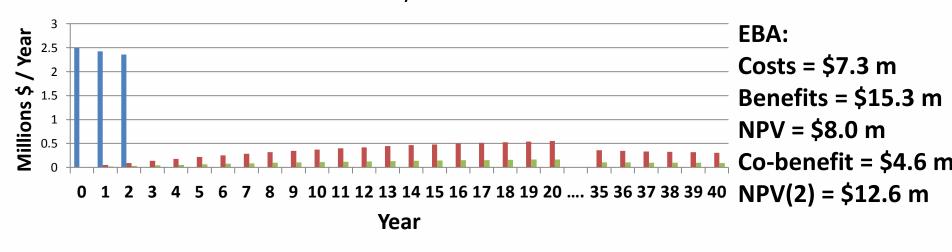
Assume: costs of \$3.0 million/year for three years; benefits of \$1.0 million/year for duration of 25-year project

Impact of the Discount Rate



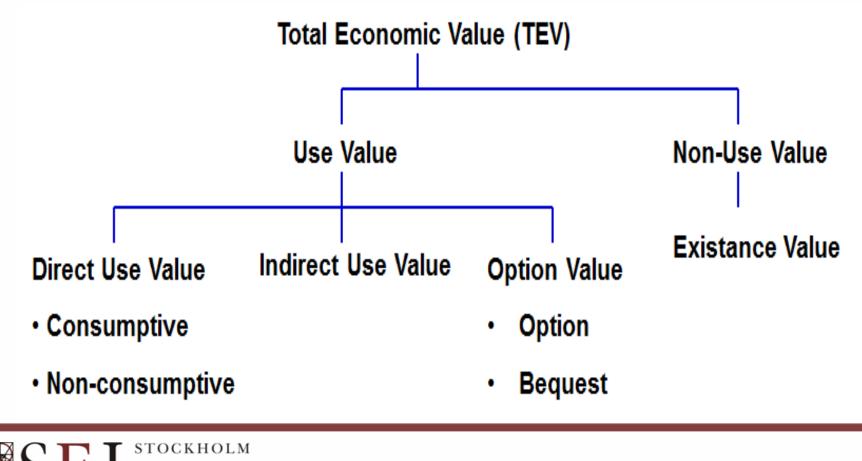
EBA vs Structural Approaches

Assume:


- Costs and benefits of structural approach as before
- EBA costs of \$2.5 million/year for three years
- EBA benefits of \$1.0 million/year for duration of 25-year project but EBA requires 20 years to mature
- Discount rate of 3% applies to all

Ancillary and Other Benefits of EBA

Assume:


- EBA costs and primary (adaptation) benefits as before
- EBA intervention delivers benefits for 40 years (20 to mature)
- EBA co-benefits of \$300,000 per year for 40 years (20 to mature)
- Discount rate of 3% applies to all
- All examples ignore recurring costs, which will not be 0!

■ EBA Cost ■ Primary ■ Co-benefit

Valuation of Non-Market EBA Benefits

Many of the ancillary benefits of EBA - wildlife habitat and protection of species diversity; improved stewardship of land and water resources; restoration of degraded ecosystems; various ecosystems services – may be difficult to value since they are non-market goods, yet they have economic value:

ENVIRONME

Methodology	Approach	Application	Data required	Limitations
Change in Productivity	Impact of change on produced goods	Any impact influencing goods production	Change in service; impact on production, value	Data scarce
Cost of Illness (human capital)	Impact on health indicators	Any impact influencing health	Change in service; impact on health, value	Dose-response functions often lacking
Replacement Cost	Market costs of replacing lost goods, services	Any loss of goods or services	Extent of loss; costs of replacing them	Tends to over- estimate costs
Travel Cost	Derived demand curve	Recreation	Survey to record travel costs, locations	Limited to recreational benefits
Hedonic Pricing	Discrete contributions of environmental factors	Air quality, aesthetics, cultural benefits	Prices, characteristics of composite goods	Requires huge, high quality data sets
Contingent Valuation	Ask WTP for specific services	Any service	Survey presenting scenario, recording stated WTP	Many sources of bias in responses; hypothetical;
Choice Modeling	Ask preferences among options	Any service	Survey	As above
Benefits Transfer	Transfer from one context to another	Wherever suitable analogues exist	Valuation exercise at a similar site	Misleading if analogue not appropriate

A comparative analysis of ecosystem-based adaptations and engineering options for Lami Town, Fiji (UNEP, SPREP and partners)

Context of Vulnerability, Lami Town

Vulnerability to Flooding:

- coastal flooding from storm surges or large waves from Suva Harbour
- flash flooding from rapidly rising rivers where hillslopes have been cleared of vegetation
- surface flooding where high rainfall pools in low lying areas

Vulnerability to Erosion:

- Shoreline erosion during storms from surge, waves, or longshore drift of sediment
- Riverbank erosion risk where rivers flow rapidly through the hills and where the river has been constrained by engineering
- Upslope or inland erosion occurring on hill-slopes, especially after forest clearing.

Adaptation Options to Reduce Coastal Vulnerability

Ecosystem-based options:

- Re-plant mangroves
- Re-plant stream buffers
- Reduce upland logging
- Reduce coral extraction

Policy and social options:

- Regulating land tenure & informal settlements
- Re-zoning land use
- Re-location of highly vulnerable households
- Flood warning system and mapping

Engineering Options to Reduce Coastal Vulnerability

Reinforce Rivers:

- Protect river banks
- **Dredge rivers**
- **River re-alignment Build sea walls Increase drainage Improve bridges** Land reclamation **Storm surge barriers Beach replenishment** Sea dikes

Elevation of infrastructure

Developing Unit Costs for Alternatives

Adaptation	Unit	Cost in FJD		
Adaptation options	cost	10y	20y	
Replant mangroves	m²	\$2.76	\$4.67	
🖉 Replant stream buffer	m ²	\$2.88	\$4.87	
lncrease drainage	m	\$16.29	\$20.00	
Build sea walls	m	\$1,670.00	\$2,050.00	
Reinforce rivers				
Protect river banks	m	\$1,144.00	\$1,404.00	
Dredge rivers	m³	\$18.52	\$22.72	
River realignment	m	\$923.00	\$1,133.00	

SEI STOCKHOLM ENVIRONMENT INSTITUTE

Cost Effectiveness Analysis of Alternatives

Sensitivity analysis of effectiveness of interventions

	Assumed	% damage	avoided
Adaptation options	50%	25%	10%
Keplant mangroves	\$77	\$38	\$15
Keplant stream buffer	\$146	\$73	\$29
Monitoring & enforcement	\$1,498	\$749	\$300
Keduce upland logging	\$2,035	\$1,018	\$407
Reduce coral extraction	\$2,988	\$1,494	\$598
Build sea walls	\$15	\$8	\$3
Secondaria Reinforce rivers	\$96	\$48	\$19
lincrease drainage	\$140	\$70	\$28

SEI STOCKHOLM ENVIRONMENT INSTITUTE

ost of damage avoided

Estimates of Ecosystems Services Values

	Type of	Type of Value		Unit/year	
Ecosystem	value	(FJD)	Hectare	Household	(FJD year ⁻¹)
Mangroves	Direct	\$41	2 1	200	\$8,200
	Indirect	\$471	320	8	\$150,720
			Ecosystem benef	fits of mangroves	\$158,920
Coral reefs	Direct	\$521	22	10	\$5,210
	Indirect	\$471	1,387		\$653,277
			Ecosystem bene	fits of coral reefs	\$658,487
Mudflats/seagrasses	Direct	\$123	-	200	\$24,600
	Indirect	\$139	330	12	\$45,870
		Ecosyste	m benefits of mu	udflats/seagrasses	\$70,470
Upland forests	Indirect	\$7	1,151	-	\$8,057
		Eco	osystem benefits	of upland forests	\$8,057
Streams	Direct	\$60	32.5		\$1,950
			Ecosystem be	enefits of streams	\$1,950
		Total e	ecosystem benefi	ts for Lami Town	\$897,884

Development of Adaptation Scenarios

	Scenario 1	Scenario 2	Scenario 3	Scenario 4
Adaptation options	Ecosytem- based options	Emphasis on ecosystem- based options	Emphasis on engineering options	Engineering options
Replant mangroves	100%	75%	25%	0%
Replant stream buffer	100%	75%	25%	0%
Monitoring & enforcement	100%	40%	20%	0%
Reduce upland logging	100%	50%	20%	0%
Reduce coral A	100%	50%	20%	0%
Build sea walls 🔔	0%	25%	75%	100%
Reinforce rivers		25%	75%	100%
Increase drainage	0%	25%	75%	100%

SEI STOCKHOLM ENVIRONMENT INSTITUTE

Benefit-Cost Analysis of Adaptation Scenarios

Scenario	Benefit-to- cost ratio (FJD)	Assumed damage avoidance
Ecosystem-based options	\$19.50	10-25%
Emphasis on ecosystem-based options	\$15.00	25%
Emphasis on engineering options	\$8.00	25%
Engineering options	\$9.00	25-50%

