

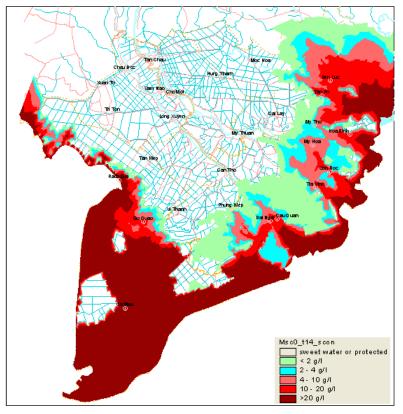
MERFI - Mekong Region Futures Institute

Experiencing the Water-Food-Energy Nexus

Dr Alexander Smajgl (CSIRO/MERFI) Dr John Ward (MERFI)

Sea Level Risks - Southeast Asia

Principle adaptation options


- Large-scale sluice gates and dikes
 - \$25b-\$38b investment required
 - Some land-use change has to be reversed
 - Annual maintenance costs of about \$500m
 - Main risk: damage/loss to storm surge and erosion
- Land-use change
 - Incentive schemes for re-optimised land use
 - Re-organisation of farm systems and market access
 - Main risk: livelihoods in extreme years/events


Debate

Make a short statement for or against an option and explain why

Salinity intrusion + Dams More saline land and less rice production (282,000 households)

SLR by 30 cm:

•50,000 ha affected (of 1.8m ha)

•120,000 tonnes less rice (23m tonnes)

SLR 30 cm + dams + drought (85%)

- 500,000 ha affected
- 1,000,000 tonnes less rice

Large scale infrastructure

Major benefits

- 13,000 ha require land use change
- Rice production unchanged
- National Food security and export objectives
- Aligns with household's motivation and behavior

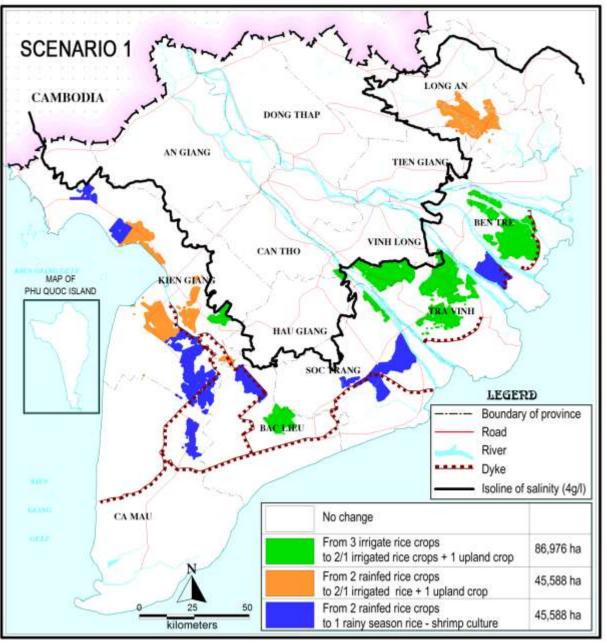
Major costs

- Costs of sea dikes and sluices: \$5,329m to \$8,176m
- Soil and water acidification and water pollution by agro-chemical residues
- Decline of bio-diversity and aquatic resources
- Existing rice-shrimp farmers severely affected (>100,000 households)
- 2 and 3 crop rice based income \approx 50 % less than other farming systems
- Reduced sediment loads, land subsidence, SLR, storm surge may effect long term operational efficacy of sea dikes

Trade-offs for hard adaptation

Water-Food

- Increase rice production (low income)
- Reduce aquaculture production (high income)
- Accelerated soil acidification
- Substantial loss in fisheries
- Food vulnerability maintained due to land subsidence and sediment reduction


Energy-Food

- Short term avoided migration lowers energy incline
- -Biofuel scenario postponed (Sugarcane scenario)
- potentially higher pumping requirements to maintain aquaculture

Water-Energy

- Energy input for construction and maintenance high
- Higher urban energy needs due to income gap
- Short term avoided desalinisation for urban water needs
- Mechanisation of rice farming accelerated increasing energy needs

Recommended Policy: land use change:

180,000 ha land use change

up to 8 farming systems

existing rice shrimp retained

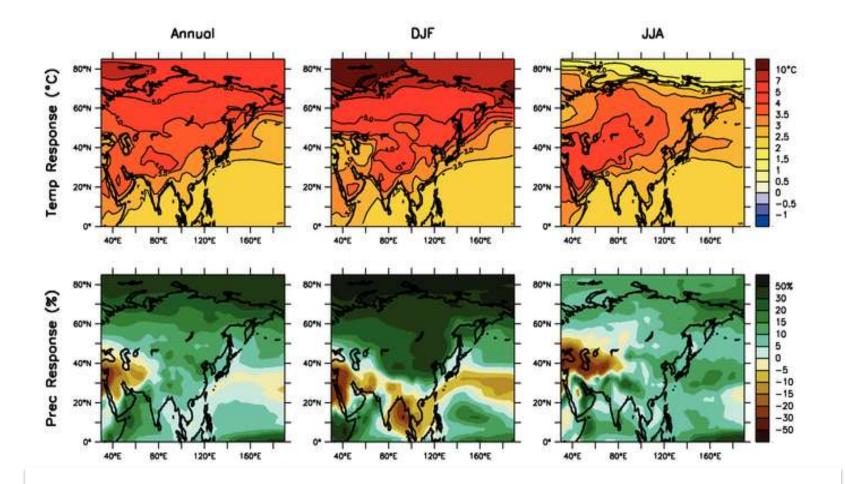
Land use changes	Major benefits
Upland crop production	 Improved farm incomes Increased employment opportunities Increased crop and potential ecological diversity Improved nutritional security
Land use changes	Major costs
Upland crop production	 1 million tonnes LESS rice produced Heavy use of pesticides
Shrimp intensification	 Soil and water salinization Mangrove losses Water pollution from shrimp field effluents Increased risk of failed production
(Carl)	

Trade-offs for soft adaptation

Water-Food

- -Decrease rice (low income)
- Increase aquaculture (high income)
- Diversified farming reduces vulnerability
- Lower agricultural water needs
- Off-shore fisheries less vulnerable
- Declining water quality due to agro-chemicals

Energy-Food


- Long term migration scenario paths lower and energy projection declines
- Bio-fuel scenario enabled (Sugarcane scenario)
- lower pumping to maintain aquaculture

Water energy

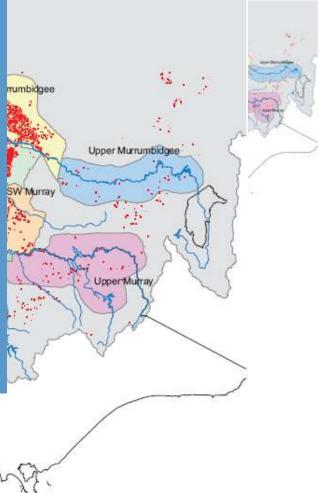
- Growing need to think about urban water needs
- Urbanisation path lowers and with that energy projections lower
- -Avoided energy input for large-scale construction

Drought management strategies

Principe adaptation options

- Large-scale infrastructure investments
 - \$10b-\$12b investment required
 - Annual maintenance costs of about \$800m
 - Main risk: soil salinisation, low uptake, reduced in stream flows
- Land-use change
 - Incentive schemes for re-optimised land use
 - Re-organisation and re-location of farm systems and market access
 - Main risk: livelihoods in extreme years/events
 - Peri-urban poverty

Debate

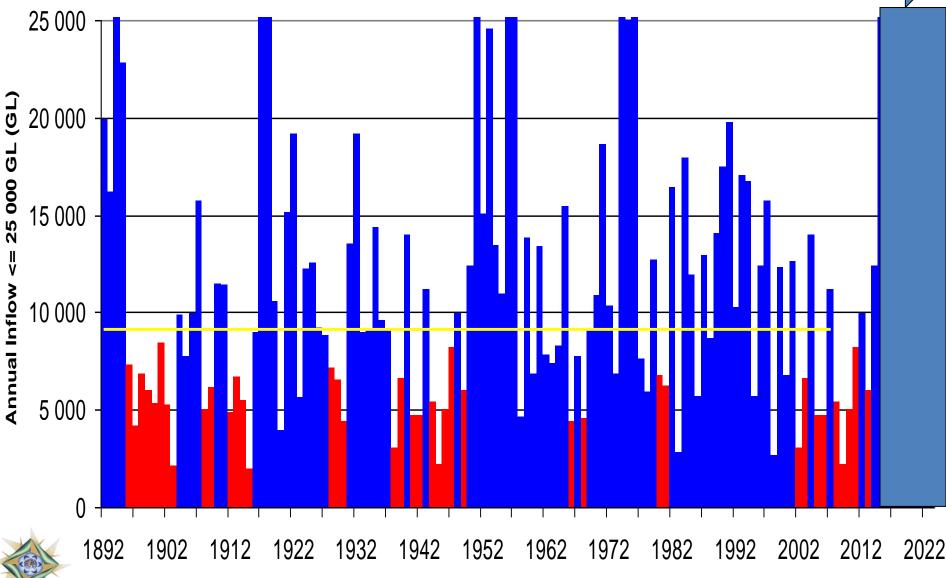

Make a short statement for or against an option and explain why

Murray Darling Basin

Murray Darling Basin:

- Irrigation diversions capped 1994-5 at 8734 GLs (2005/06): 80% of total Aus. Irrigation
- ~ \$4.6 billion gross revenue: 34% of total MDB agriculture
- Highly allocated >50%
- Increasingly liberalised and Active temporary & Permanent markets

Achieving Multiple Benefits


Climate change predictions

- Nearly 40% reduction in water runoff by 2030
- 10- to 20-fold increase in exceptionally hot years; 2- to 3-fold increase in exceptionally dry years by 2040
- 50% reduction in agricultural output by 2050

Total River Murray System Inflows (including Darling River) with post 1938 sequence imposed from 2002

Re-live from 1938

- 20% decreased rainfall = 67% reduced inflow= Dams empty
- 17% Diversions: 83% in-stream flows. Fish loss, hyper saline estuary, wetland loss, acid sulphate mobilised
- \$12b= infrastructure and water buy back for the environment. Reduced diversions by 25%
- Agricultural value only 1% GDP
- Water trading meant water moved to high value cash crops= secure water rights independent of land
- Cities: water treatment, desalinisation and recycling= energy intensive
- Hydro scheme had to trade in water= less food production
- regional urban centres: population and businesses increased by 16-28%

Mekong Region Futures Institute

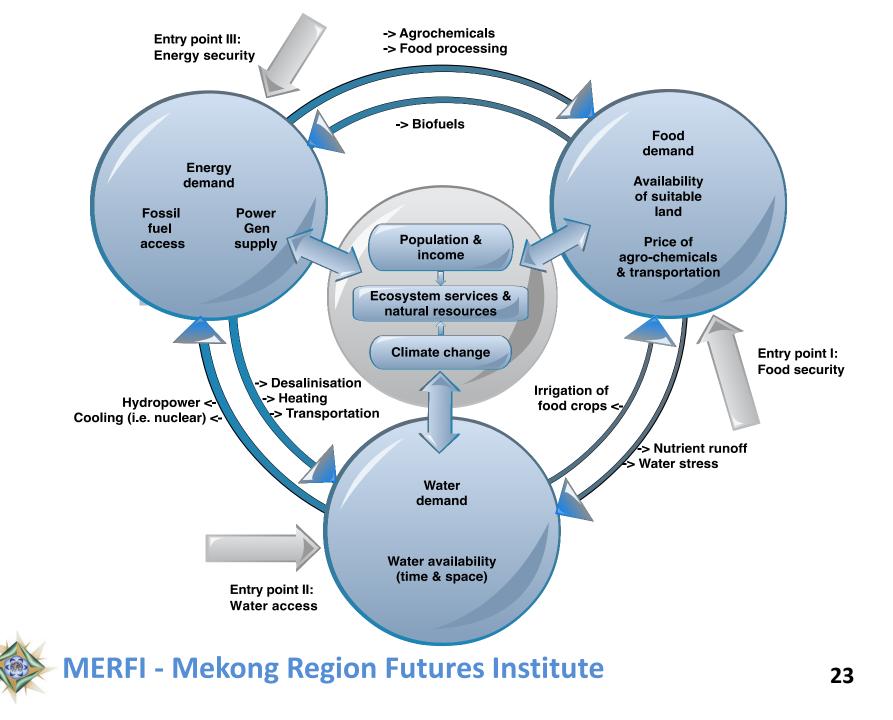
- Nexus-type analysis
- Participatory processes to establish efficient science-policy interfaces
- Integrated modelling and analysis
- Household level analysis
- Training center

Nexus analysis

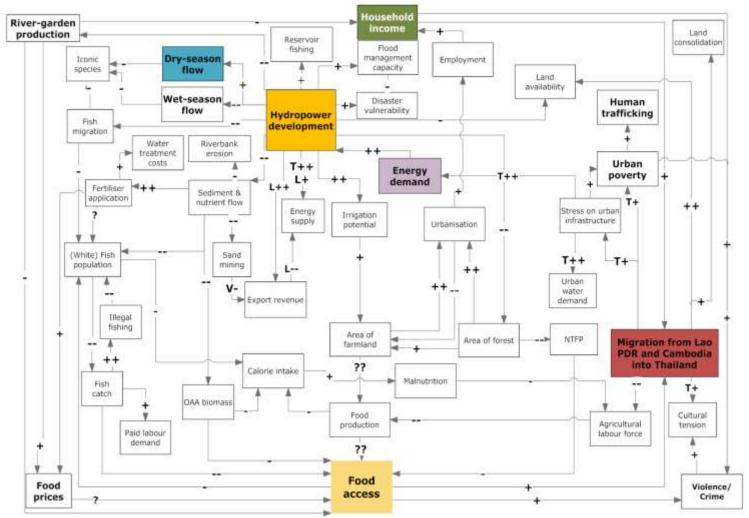
- 1. Sector-specific impact assessment
- 2. Identify ripple effects
- 3. Qualify and quantify trade-offs
- 4. Dynamic projection of trade-offs

Water specific impact assessment

- Flood Risks change from natural to operational (3-6 meters of daily flow fluctuations 40-50km downstream reservoirs)
- 2. Up to 70% increase in dry season flow in North Laos and Thailand, but only 10% in Delta
- 200 Mt sediment loads drop to 90Mt to 20Mt/year causing erosion of riverbanks and the Delta


Food specific impact assessment

- 1. Sharp reduction in fisheries (including estuarine and off shore)
- 2. Dependence upon imported food and markets will increase
- 3. Food prices increase
- 4. Biodiversity will decline because of increased mono-crops


Energy specific impact assessment

- 1. Increased power generation capacity
- 2. Increase in national and regional GDP
- 3. Higher energy and materials prices

Ripple effects

Nexus-dynamics: System criticalities

- Transboundary fish stock management
- Instruments to manage risks from monocultures
- •Strategies to avoid migration peaks due to change in access to natural resources
- •Strategies for labour transition from primary to secondary sectors in the context of urban growth
- •Explicit management of energy demand instead of sole focus on energy supply

MERFI - Mekong Region Futures Institute

Thank You

Dr Alexander Smajgl (CSIRO/MERFI): <u>alex.smajgl@mekongfutures.com</u>

Dr John Ward (MERFI) john.ward@mekongfutures.com

